Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.244
Filtrar
1.
Chem Commun (Camb) ; 60(33): 4495-4498, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38567462

RESUMO

We have demonstrated that cisplatin (CP), an anticancer drug, showed a preference for binding the sulfated-L-iduronic acid (S-L-IdoA) unit over the sulfated-D-glucuronic acid unit of heparan sulfate. The multivalency of S-L-IdoA, such as in the proteoglycan mimic, resulted in distinct modes of cell-surface engineering in normal and cancer cells, with these disparities having a significant impact on CP-mediated toxicity.


Assuntos
Cisplatino , Proteoglicanas , Heparitina Sulfato/química , Ácido Glucurônico/metabolismo , Ácido Idurônico , Sulfatos
2.
Carbohydr Polym ; 333: 121979, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38494232

RESUMO

Heparan sulfate (HS) is a glycosaminoglycan (GAG) found throughout nature and is involved in a wide range of functions including modulation of cell signalling via sequestration of growth factors. Current consensus is that the specificity of HS motifs for protein binding are individual for each protein. Given the structural complexity of HS the synthesis of libraries of these compounds to probe this is not trivial. Herein we present the synthesis of an HS decamer, the design of which was undertaken rationally from previously published data for HS binding to the growth factor BMP-2. The biological activity of this HS decamer was assessed in vitro, showing that it had the ability to both bind BMP-2 and increase its thermal stability as well as enhancing the bioactivity of BMP-2 in vitro in C2C12 cells. At the same time no undesired anticoagulant effect was observed. This decamer was then analysed in vivo in a rabbit model where higher bone formation, bone mineral density (BMD) and trabecular thickness were observed over an empty defect or collagen implant alone. This indicated that the HS decamer was effective in promoting bone regeneration in vivo.


Assuntos
Glicosaminoglicanos , Heparitina Sulfato , Animais , Coelhos , Heparitina Sulfato/química , Osteogênese , Ligação Proteica , Regeneração Óssea , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo
3.
Angew Chem Int Ed Engl ; 63(13): e202316791, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38308859

RESUMO

Heparin and heparan sulfate (HS) are naturally occurring mammalian glycosaminoglycans, and their synthetic and semi-synthetic mimetics have attracted significant interest as potential therapeutics. However, understanding the mechanism of action by which HS, heparin, and HS mimetics have a biological effect is difficult due to their highly charged nature, broad protein interactomes, and variable structures. To address this, a library of novel single-entity dendritic mimetics conjugated to BODIPY, Fluorine-19 (19 F), and biotin was synthesized for imaging and localization studies. The novel dendritic scaffold allowed for the conjugation of labeling moieties without reducing the number of sulfated capping groups, thereby better mimicking the multivalent nature of HS-protein interactions. The 19 F labeled mimetics were assessed in phantom studies and were detected at concentrations as low as 5 mM. Flow cytometric studies using a fluorescently labeled mimetic showed that the compound associated with immune cells from tumors more readily than splenic counterparts and was directed to endosomal-lysosomal compartments within immune cells and cancer cells. Furthermore, the fluorescently labeled mimetic entered the central nervous system and was detectable in brain-infiltrating immune cells 24 hours after treatment. Here, we report the enabling methodology for rapidly preparing various labeled HS mimetics and molecular probes with diverse potential therapeutic applications.


Assuntos
Biotina , Compostos de Boro , Heparitina Sulfato , Animais , Heparitina Sulfato/química , Glicosaminoglicanos/metabolismo , Heparina/metabolismo , Mamíferos/metabolismo
4.
Glycobiology ; 34(3)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38181393

RESUMO

Heparan sulfate (HS) plays its biological functions by interacting with hundreds of secreted extracellular and transmembrane proteins. Interaction with HS has been shown to be required for the normal function of many HS-binding proteins. Receptor for advanced glycation end-product (RAGE) is such a protein, whose activation requires HS-induced oligomerization. Using RAGE as an exemplary protein, we show here the workflow of a simple method of developing and characterizing mAbs that targets the HS-binding site. We found that HS-binding site of RAGE is quite immunogenic as 18 out of 94 anti-RAGE mAbs target various epitopes within the HS-binding site. Sequence analysis found that a common feature of anti-HS-binding site mAbs is the presence of abundant acidic residues (range between 6 to 11) in the complementarity determining region, suggesting electrostatic interaction plays an important role in promoting antigen-antibody interaction. Interestingly, mAbs targeting different epitopes within the HS-binding site blocks HS-RAGE interaction to different degrees, and the inhibitory effect is highly consistent among mAbs that target the same epitope. Functional assay revealed that anti-HS-binding site mAbs show different potency in inhibiting osteoclastogenesis, and the inhibitory potency does not have a simple correlation with the affinity and the epitope. Our study demonstrates that developing HS-binding site targeting mAbs should be applicable to most HS-binding proteins. By targeting this unique functional site, these mAbs might find therapeutic applications in treating various human diseases.


Assuntos
Anticorpos Monoclonais , Heparitina Sulfato , Humanos , Heparitina Sulfato/química , Epitopos/química , Sítios de Ligação
5.
Biomolecules ; 13(12)2023 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-38136608

RESUMO

(1) Background: In this study, we evaluated the modulation of urine glycosaminoglycans (GAGs), which resulted from etanercept (ETA) therapy in patients with juvenile idiopathic arthritis (JIA) in whom methotrexate therapy failed to improve their clinical condition. (2) Methods: The sulfated GAGs (sGAGs, by complexation with blue 1,9-dimethylmethylene), including chondroitin-dermatan sulfate (CS/DS) and heparan sulfate (HS), as well as non-sulfated hyaluronic acid (HA, using the immunoenzymatic method), were determined in the blood of 89 children, i.e., 30 healthy children and 59 patients with JIA both before and during two years of ETA treatment. (3) Results: We confirmed the remodeling of the urinary glycan profile of JIA patients. The decrease in the excretion of sGAGs (p < 0.05), resulting from a decrease in the concentration of the dominant fraction in the urine, i.e., CS/DS (p < 0.05), not compensated by an increase in the concentration of HS (p < 0.000005) and HA (p < 0.0005) in the urine of patients with the active disease, was found. The applied biological therapy, leading to clinical improvement in patients, at the same time, did not contribute to normalization of the concentration of sGAGs (p < 0.01) in the urine of patients, as well as CS/DS (p < 0.05) in the urine of sick girls, while it promoted equalization of HS and HA concentrations. These results indicate an inhibition of the destruction of connective tissue structures but do not indicate their complete regeneration. (4) Conclusions: The metabolisms of glycans during JIA, reflected in their urine profile, depend on the patient's sex and the severity of the inflammatory process. The remodeling pattern of urinary glycans observed in patients with JIA indicates the different roles of individual types of GAGs in the pathogenesis of osteoarticular disorders in sick children. Furthermore, the lack of normalization of urinary GAG levels in treated patients suggests the need for continued therapy and continuous monitoring of its effectiveness, which will contribute to the complete regeneration of the ECM components of the connective tissue and thus protect the patient against possible disability.


Assuntos
Artrite Juvenil , Glicosaminoglicanos , Criança , Feminino , Humanos , Glicosaminoglicanos/química , Artrite Juvenil/tratamento farmacológico , Dermatan Sulfato/química , Dermatan Sulfato/urina , Heparitina Sulfato/química , Sulfatos de Condroitina/química
6.
Biomolecules ; 13(11)2023 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-38002315

RESUMO

Although molecular docking has evolved dramatically over the years, its application to glycosaminoglycans (GAGs) has remained challenging because of their intrinsic flexibility, highly anionic character and rather ill-defined site of binding on proteins. GAGs have been treated as either fully "rigid" or fully "flexible" in molecular docking. We reasoned that an intermediate semi-rigid docking (SRD) protocol may be better for the recapitulation of native heparin/heparan sulfate (Hp/HS) topologies. Herein, we study 18 Hp/HS-protein co-complexes containing chains from disaccharide to decasaccharide using genetic algorithm-based docking with rigid, semi-rigid, and flexible docking protocols. Our work reveals that rigid and semi-rigid protocols recapitulate native poses for longer chains (5→10 mers) significantly better than the flexible protocol, while 2→4-mer poses are better predicted using the semi-rigid approach. More importantly, the semi-rigid docking protocol is likely to perform better when no crystal structure information is available. We also present a new parameter for parsing selective versus non-selective GAG-protein systems, which relies on two computational parameters including consistency of binding (i.e., RMSD) and docking score (i.e., GOLD Score). The new semi-rigid protocol in combination with the new computational parameter is expected to be particularly useful in high-throughput screening of GAG sequences for identifying promising druggable targets as well as drug-like Hp/HS sequences.


Assuntos
Heparina , Proteínas , Heparina/química , Simulação de Acoplamento Molecular , Proteínas/química , Glicosaminoglicanos/química , Heparitina Sulfato/química , Oligossacarídeos , Algoritmos , Ligação Proteica , Sítios de Ligação
7.
Nat Commun ; 14(1): 6425, 2023 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-37828045

RESUMO

Two major glycosaminoglycan types, heparan sulfate (HS) and chondroitin sulfate (CS), control many aspects of development and physiology in a type-specific manner. HS and CS are attached to core proteins via a common linker tetrasaccharide, but differ in their polymer backbones. How core proteins are specifically modified with HS or CS has been an enduring mystery. By reconstituting glycosaminoglycan biosynthesis in vitro, we establish that the CS-initiating N-acetylgalactosaminyltransferase CSGALNACT2 modifies all glycopeptide substrates equally, whereas the HS-initiating N-acetylglucosaminyltransferase EXTL3 is selective. Structure-function analysis reveals that acidic residues in the glycopeptide substrate and a basic exosite in EXTL3 are critical for specifying HS biosynthesis. Linker phosphorylation by the xylose kinase FAM20B accelerates linker synthesis and initiation of both HS and CS, but has no effect on the subsequent polymerisation of the backbone. Our results demonstrate that modification with CS occurs by default and must be overridden by EXTL3 to produce HS.


Assuntos
Sulfatos de Condroitina , Glicosaminoglicanos , Glicosaminoglicanos/metabolismo , Sulfatos de Condroitina/metabolismo , Heparitina Sulfato/química , Fosforilação , Glicopeptídeos/metabolismo
8.
Inorg Chem ; 62(33): 13212-13220, 2023 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-37552525

RESUMO

In this study, we have used [1H, 15N] NMR spectroscopy to investigate the interactions of the trinuclear platinum anticancer drug triplatin (1) (1,0,1/t,t,t or BBR3464) with site-specific sulfated and carboxylated disaccharides. Specifically, the disaccharides GlcNS(6S)-GlcA (I) and GlcNS(6S)-IdoA(2S) (II) are useful models of longer-chain glycosaminoglycans (GAGs) such as heparan sulfate (HS). For both the reactions of 15N-1 with I and II, equilibrium conditions were achieved more slowly (65 h) compared to the reaction with the monosaccharide GlcNS(6S) (9 h). The data suggest both carboxylate and sulfate binding of disaccharide I to the Pt with the sulfato species accounting for <1% of the total species at equilibrium. The rate constant for sulfate displacement of the aqua ligand (kL2) is 4 times higher than the analogous rate constant for carboxylate displacement (kL1). There are marked differences in the equilibrium concentrations of the chlorido, aqua, and carboxy-bound species for reactions with the two disaccharides, notably a significantly higher concentration of carboxylate-bound species for II, where sulfate-bound species were barely detectable. The trend mirrors that reported for the corresponding dinuclear platinum complex 1,1/t,t, where the rate constant for sulfate displacement of the aqua ligand was 3 times higher than that for acetate. Also similar to what we observed for the reactions of 1,1/t,t with the simple anions, aquation of the sulfato group is rapid, and the rate constant k-L2 is 3 orders of magnitude higher than that for displacement of the carboxylate (k-L1). Molecular dynamics calculations suggest that extra hydrogen-bonding interactions with the more sulfated disaccharide II may prevent or diminish sulfate binding of the triplatin moiety. The overall results suggest that Pt-O donor interactions should be considered in any full description of platinum complex cellular chemistry.


Assuntos
Heparitina Sulfato , Platina , Ligantes , Heparitina Sulfato/química , Dissacarídeos/química , Sulfatos/química
9.
Carbohydr Res ; 532: 108919, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37557021

RESUMO

Heparan sulfate (HS) is ubiquitous polysaccharide on the surface of all mammalian cells and extracellular matrices. The incredible structural complexity of HS arises from its sulfation patterns and disaccharide compositions, which orchestrate a wide range of biological activities. Researchers have developed elegant synthetic methods to obtain well-defined HS oligosaccharides to understand the structure-activity relationship. These studies revealed that specific sulfation codes and uronic acid variants could synergistically modulate HS-protein interactions (HSPI). Additionally, the conformational flexibility of l-Iduronic acid, a uronic acid unit has emerged as a critical factor in fine-tuning the microenvironment to modulate HSPI. This review delineates how uronic acid composition in HS modulates protein binding affinity, selectivity, and biological activity. Finally, the significance of sulfated homo-oligo uronic acid as heparin mimics in drug development is also discussed.


Assuntos
Heparitina Sulfato , Ácidos Urônicos , Animais , Heparitina Sulfato/química , Oligossacarídeos/química , Heparina/metabolismo , Ligação Proteica , Mamíferos/metabolismo
10.
Angew Chem Int Ed Engl ; 62(32): e202304325, 2023 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-37285191

RESUMO

Heparan sulfate (HS) contains variably repeating disaccharide units organized into high- and low-sulfated domains. This rich structural diversity enables HS to interact with many proteins and regulate key signaling pathways. Efforts to understand structure-function relationships and harness the therapeutic potential of HS are hindered by the inability to synthesize an extensive library of well-defined HS structures. We herein report a rational and expedient approach to access a library of 27 oligosaccharides from natural aminoglycosides as HS mimetics in 7-12 steps. This strategy significantly reduces the number of steps as compared to the traditional synthesis of HS oligosaccharides from monosaccharide building blocks. Combined with computational insight, we identify a new class of four trisaccharide compounds derived from the aminoglycoside tobramycin that mimic natural HS and have a strong binding to heparanase but a low affinity for off-target platelet factor-4 protein.


Assuntos
Aminoglicosídeos , Heparitina Sulfato , Aminoglicosídeos/farmacologia , Heparitina Sulfato/química , Proteínas/metabolismo , Oligossacarídeos/química , Dissacarídeos
11.
Biochemistry ; 62(14): 2202-2215, 2023 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-37368361

RESUMO

Heparanase (HPSE) is the only mammalian endo-ß-glucuronidase known to catalyze the degradation of heparan sulfate. Dysfunction of HPSE activity has been linked to several disease states, resulting in HPSE becoming the target of numerous therapeutic programs, yet no drug has passed clinical trials to date. Pentosan polysulfate sodium (PPS) is a heterogeneous, FDA-approved drug for the treatment of interstitial cystitis and a known HPSE inhibitor. However, due to its heterogeneity, characterization of its mechanism of HPSE inhibition is challenging. Here, we show that inhibition of HPSE by PPS is complex, involving multiple overlapping binding events, each influenced by factors such as oligosaccharide length and inhibitor-induced changes in the protein secondary structure. The present work advances our molecular understanding of the inhibition of HPSE and will aid in the development of therapeutics for the treatment of a broad range of pathologies associated with enzyme dysfunction, including cancer, inflammatory disease, and viral infections.


Assuntos
Glucuronidase , Heparitina Sulfato , Animais , Heparitina Sulfato/química , Glucuronidase/química , Mamíferos/metabolismo
12.
Nat Chem ; 15(8): 1108-1117, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37349377

RESUMO

Glycosaminoglycans (GAGs) are abundant, ubiquitous carbohydrates in biology, yet their structural complexity has limited an understanding of their biological roles and structure-function relationships. Synthetic access to large collections of well defined, structurally diverse GAG oligosaccharides would provide critical insights into this important class of biomolecules and represent a major advance in glycoscience. Here we report a new platform for synthesizing large heparan sulfate (HS) oligosaccharide libraries displaying comprehensive arrays of sulfation patterns. Library synthesis is made possible by improving the overall synthetic efficiency through universal building blocks derived from natural heparin and a traceless fluorous tagging method for rapid purification with minimal manual manipulation. Using this approach, we generated a complete library of 64 HS oligosaccharides displaying all possible 2-O-, 6-O- and N-sulfation sequences in the tetrasaccharide GlcN-IdoA-GlcN-IdoA. These diverse structures provide an unprecedented view into the sulfation code of GAGs and identify sequences for modulating the activities of important growth factors and chemokines.


Assuntos
Glicosaminoglicanos , Heparitina Sulfato , Glicosaminoglicanos/química , Heparitina Sulfato/química , Heparitina Sulfato/metabolismo , Oligossacarídeos/química
13.
J Inorg Biochem ; 245: 112254, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37182504

RESUMO

The biological activity of the 6+ Co containing Werner's Complex has been described and mechanistic considerations suggest that the highly anionic glycosaminoglycans (heparan sulfate, HS, GAGs) are implicated in this activity [Paiva et al. 2021]. To examine in detail the molecular basis of Werner's Complex biological properties we have examined a selection of simple mononuclear Co3+ compounds for their interactions with HS and Fondaparinux (FPX). FPX is a highly sulfated synthetic pentasaccharide used as a model HS substrate [Mangrum et al. 2014, Peterson et al. 2017]. The Co complexes were chosen to be formally substitution-inert and/or have the potential for covalent binding to the biomolecule. Using both indirect competitive inhibition assays and direct mass spectrometric assays, formally substitution-inert complexes bound to FPX with protection from multiple sulfate loss in the gas phase through metalloshielding. Covalent binding of Co-Cl complexes as in [CoCl(NH3)5]2+ and cis-[CoCl2(en)2]+ was confirmed by mass spectrometry. Interestingly, the former complex was shown to be an effective inhibitor of bacterial heparinase enzyme activity and to inhibit heparanase-dependent cellular invasion through the extracellular matrix (ECM). Pursuing the theme of metalloglycomics, we have observed the hitherto unappreciated biological activity of the simple [CoCl(NH3)5]2+ compound, a staple of most inorganic chemistry lab curricula.


Assuntos
Cobalto , Glicosaminoglicanos , Cobalto/metabolismo , Heparina/química , Heparina/metabolismo , Heparitina Sulfato/química , Heparitina Sulfato/metabolismo , Heparitina Sulfato/farmacologia , Matriz Extracelular/metabolismo , Fondaparinux
14.
ACS Nano ; 17(8): 7207-7218, 2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-37042659

RESUMO

Heparan sulfate (HS) is a heterogeneous, cell-surface polysaccharide critical for transducing signals essential for mammalian development. Imaging of signaling proteins has revealed how their localization influences their information transfer. In contrast, the contribution of the spatial distribution and nanostructure of information-rich, signaling polysaccharides like HS is not known. Using expansion microscopy (ExM), we found striking changes in HS nanostructure occur as human pluripotent stem (hPS) cells differentiate, and these changes correlate with growth factor signaling. Our imaging studies show that undifferentiated hPS cells are densely coated with HS displayed as hair-like protrusions. This ultrastructure can recruit fibroblast growth factor for signaling. When the hPS cells differentiate into the ectoderm lineage, HS is localized into dispersed puncta. This striking change in HS distribution coincides with a decrease in fibroblast growth factor binding to neural cells. While developmental variations in HS sequence were thought to be the primary driver of alterations in HS-mediated growth factor signaling, our high-resolution images indicate a role for the HS nanostructure. Our study highlights the utility of high-resolution glycan imaging using ExM. In the case of HS, we found that changes in how the polysaccharide is displayed link to profound differences in growth factor binding.


Assuntos
Heparitina Sulfato , Células-Tronco Pluripotentes , Animais , Humanos , Heparitina Sulfato/química , Heparitina Sulfato/metabolismo , Diferenciação Celular , Células-Tronco Pluripotentes/metabolismo , Transdução de Sinais , Fatores de Crescimento de Fibroblastos , Mamíferos/metabolismo
15.
Angew Chem Int Ed Engl ; 62(23): e202212636, 2023 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-37014788

RESUMO

Apolipoprotein E (ApoE)'s ϵ4 alle is the most important genetic risk factor for late onset Alzheimer's Disease (AD). Cell-surface heparan sulfate (HS) is a cofactor for ApoE/LRP1 interaction and the prion-like spread of tau pathology between cells. 3-O-sulfo (3-O-S) modification of HS has been linked to AD through its interaction with tau, and enhanced levels of 3-O-sulfated HS and 3-O-sulfotransferases in the AD brain. In this study, we characterized ApoE/HS interactions in wildtype ApoE3, AD-linked ApoE4, and AD-protective ApoE2 and ApoE3-Christchurch. Glycan microarray and SPR assays revealed that all ApoE isoforms recognized 3-O-S. NMR titration localized ApoE/3-O-S binding to the vicinity of the canonical HS binding motif. In cells, the knockout of HS3ST1-a major 3-O sulfotransferase-reduced cell surface binding and uptake of ApoE. 3-O-S is thus recognized by both tau and ApoE, suggesting that the interplay between 3-O-sulfated HS, tau and ApoE isoforms may modulate AD risk.


Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/metabolismo , Apolipoproteína E3/genética , Apolipoproteínas E/química , Apolipoproteínas E/genética , Apolipoproteínas E/metabolismo , Heparitina Sulfato/química , Isoformas de Proteínas/metabolismo
16.
Glycobiology ; 33(5): 384-395, 2023 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-37052463

RESUMO

Sulf-2 is an extracellular heparan 6-O-endosulfatase involved in the postsynthetic editing of heparan sulfate (HS), which regulates many important biological processes. The activity of the Sulf-2 and its substrate specificity remain insufficiently characterized in spite of more than two decades of studies of this enzyme. This is due, in part, to the difficulties in the production and isolation of this highly modified protein and due to the lack of well-characterized synthetic substrates for the probing of its catalytic activity. We introduce synthetic HS oligosaccharides to fill this gap, and we use our recombinant Sulf-2 protein to show that a paranitrophenol (pNP)-labeled synthetic oligosaccharide allows a reliable quantification of its enzymatic activity. The substrate and products of the desulfation reaction are separated by ion exchange high-pressure liquid chromatography and quantified by UV absorbance. This simple assay allows the detection of the Sulf-2 activity at high sensitivity (nanograms of the enzyme) and specificity. The method also allowed us to measure the heparan 6-O-endosulfatase activity in biological samples as complex as the secretome of cancer cell lines. Our in vitro measurements show that the N-glycosylation of the Sulf-2 enzyme affects the activity of the enzyme and that phosphate ions substantially decrease the Sulf-2 enzymatic activity. This assay offers an efficient, sensitive, and specific measurement of the heparan 6-O-endosulfatase activity that could open avenues to in vivo activity measurements and improve our understanding of the enzymatic editing of the sulfation of heparan.


Assuntos
Heparitina Sulfato , Oligossacarídeos , Heparitina Sulfato/química , Linhagem Celular , Proteínas Recombinantes/metabolismo , Glicosaminoglicanos , Sulfotransferases/metabolismo
17.
Glycobiology ; 33(5): 432-440, 2023 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-36912112

RESUMO

Heparin, a highly sulfated and epimerized form of heparan sulfate, is a linear polysaccharide with anticoagulant activity widely used in the clinic to prevent and treat thrombotic diseases. However, there are several noteworthy drawbacks associated with animal-sourced heparin during the preparation process. The in vitro enzymatic synthesis of heparin has become a promising substitute for animal-derived heparin. The synthesis of bioengineered heparin involves recombinant expression and preparation of polymerases, sulfotransferases, and an epimerase. D-glucuronyl C5-epimerase (HSepi) catalyzes D-glucuronic acids immediately adjacent to N-sulfo-glucosamine units to L-iduronic acid. Preparation of recombinant HSepi with high activity and production yield for in vitro heparin synthesis has not been resolved as of now. The findings of this study indicate that the catalytic activity of HSepi is regulated using post-translational modifications, including N-linked glycosylation and disulfide bond formation. Further mutation studies suggest that tyrosine residues, such as Tyr168, Tyr222, Tyr500, Tyr560, and Tyr578, are crucial in maintaining HSepi activity. A high-yield expression strategy was established using the lentiviral-based transduction system to produce recombinant HSepi (HSepi589) with a specific activity of up to 1.6 IU/mg. Together, this study contributes to the preparation of highly active HSepi for the enzymatic synthesis of heparins by providing additional insights into the catalytic activity of HSepi.


Assuntos
Carboidratos Epimerases , Heparitina Sulfato , Animais , Humanos , Carboidratos Epimerases/metabolismo , Heparitina Sulfato/química , Heparina , Racemases e Epimerases/genética , Mutação , Mamíferos/metabolismo
18.
Anal Methods ; 15(11): 1461-1469, 2023 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-36876452

RESUMO

The fine structure of heparan sulfate (HS), the glycosaminoglycan polysaccharide component of cell surface and extracellular matrix HS proteoglycans, coordinates the complex cell signalling processes that control homeostasis and drive development in multicellular animals. In addition, HS is involved in the infection of mammals by viruses, bacteria and parasites. The current detection limit for fluorescently labelled HS disaccharides (low femtomole; 10-15 mol), has effectively hampered investigations of HS composition in small, functionally-relevant populations of cells and tissues that may illuminate the structural requirements for infection and other biochemical processes. Here, an ultra-high sensitivity method is described that utilises a combination of reverse-phase HPLC, with tetraoctylammonium bromide (TOAB) as the ion-pairing reagent and laser-induced fluorescence detection of BODIPY-FL-labelled disaccharides. The method provides an unparalleled increase in the sensitivity of detection by ∼six orders of magnitude, enabling detection in the zeptomolar range (∼10-21 moles; <1000 labelled molecules). This facilitates determination of HS disaccharide compositional analysis from minute samples of selected tissues, as demonstrated by analysis of HS isolated from the midguts of Anopheles gambiae mosquitoes that was achieved without approaching the limit of detection.


Assuntos
Culicidae , Dissacarídeos , Animais , Dissacarídeos/análise , Dissacarídeos/química , Cromatografia Líquida de Alta Pressão/métodos , Heparitina Sulfato/análise , Heparitina Sulfato/química , Mamíferos
19.
Glycoconj J ; 40(2): 169-178, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36749437

RESUMO

Dried leech (Whitmania pigra whitman) has been widely used as a traditional animal-based Chinese medicine. Dried leech extracts have been reported to have various biological activities that are often associated with mammalian glycosaminoglycans. However, their presence and possible structural characteristics within dried leech were previously unknown. In this study, glycosaminoglycans were isolated from dried leech for the first time and their structures were analyzed by the combination of Fourier-transform infrared spectroscopy, liquid chromatography-ion trap/time-of-flight mass spectrometry and polyacrylamide gel electrophoresis. Heparan sulfate and chondroitin sulfate/dermatan sulfate were detected in dried leech with varied disaccharide compositions and possess a heterogeneous structure. Heparan sulfate species possess an equal amount of total 2-O-sulfated, N-sulfated and acetylated disaccharides, while chondroitin sulfate /dermatan sulfate contain high content of 4-O-sulfated disaccharides. Also, the quantitative analysis revealed that the contents of heparan sulfate and chondroitin/dermatan sulfate in dried leech varied significantly, with chondroitin/dermatan sulfate being by far the most abundant. This novel structural information could help clarify the possible involvement of these polysaccharides in the biological activities of the dried leech. Furthermore, leech glycosaminoglycans showed a strong ABTS radical scavenging ability, which suggests the potential of leech polysaccharides for exploitation in the nutraceutical and pharmaceutical industries.


Assuntos
Sulfatos de Condroitina , Glicosaminoglicanos , Animais , Glicosaminoglicanos/química , Sulfatos de Condroitina/química , Dermatan Sulfato/química , Antioxidantes/farmacologia , Heparitina Sulfato/química , Mamíferos , Dissacarídeos/química
20.
Methods Mol Biol ; 2619: 71-90, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36662463

RESUMO

Glycosaminoglycans (GAGs) are built up of repeating disaccharide units resulting in long, linear polysaccharide chains. In most classes of GAGs, sulfation and epimerization complicate the structure of the chain and influence biochemical functions. The most widespread way of their investigation by instrumental analytical techniques is to degrade them into the constituent disaccharide building blocks, followed by capillary electrophoresis or high-performance liquid chromatography (HPLC) separation. The analysis of GAG disaccharides with varying sulfation degrees poses a real challenge both from chromatographic and mass spectrometric (MS) points of view. This necessitates the constant improvement of their analytical methodology. In this chapter, an optimized workflow will be discussed for the sample preparation and subsequent HPLC-MS characterization of tissue-derived chondroitin sulfate and heparan sulfate.


Assuntos
Sulfatos de Condroitina , Heparitina Sulfato , Sulfatos de Condroitina/química , Cromatografia Líquida de Alta Pressão/métodos , Heparitina Sulfato/química , Glicosaminoglicanos/química , Dissacarídeos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...